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 Abstract 

Current observational data indicates the possible existence of compact stars composed of 

deconfined quarks known as strange stars. In this paper, we present two new class of solutions for 

a compact star whose interior strange matter composition admits the MIT Bag model equation of 

state. The solutions are expressed in terms of elementary functions which facilitates its physical 

applicability. The new solution contains some of the previously obtained solutions including 

models of charged anisotropic relativistic spheres and isotropic charged star model. The general 

class of solutions generated in this paper will, hopefully, contribute to the existing rich class of 

solutions to the Einstein-Maxwell system of equations.  
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1. Introduction  

Theoretical modelling of quark stars has received intense research interests ever since quarks have 

been conjectured to be the most energetically favourable state of baryonic matter Witten [1], Farhi 

and Jaffe [2].  In a seminal work, the existence of a stellar configuration in hydrostatics equilibrium 

composed of quark matter was first proposed by Itoth [3]. Since we do not observe free quarks, in 

an attempt to describe the quark confinement mechanism, [4] proposed the phenomenological MIT 

Bag model where one assumes that the quark confinement is caused by a universal pressure called 

the ‘bag pressure’ at the boundary of the region containing quarks. The equation of state (EOS) in 

the bag model has a simple linear form 𝑝 = (𝜌 − 4𝐵)/3, where ρ = density, 𝑝 = isotropic pressure 

and 𝐵 = the bag constant. For stability, one assumes the bag constant within a particular range [2, 

5], even though density and temperature dependent bag models have been proposed where the bag 

constant can take a much wider range of values [6, 7]. Stellar configurations entirely composed of 

deconfined u, d and s quarks are so compact systems that a relativistic approach is necessary to 

describe such objects. Consequently, relativistic stellar models composed entirely of quark matter 

have been developed and analyzed to understand the physical properties of such type of stars. The 

analytic models have been developed either by choosing the simplest linear form of the bag model 

EOS or a more complex EOS for quark matter. For some recent treatments in this area, one may 

follow the works of [8, 9, 10] and references therein. 

 

The aim of the current investigation is to present new class of exact solutions capable of describing 

strange star candidates. We intend to achieve this by generating a new class of exact solutions to 

the Einstein-Maxwell system for a spherical object composed of quark matter in the presence of 
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local anisotropy. For the quark matter, we assume the bag model equation of state and to solve the 

system of equations, we assume a particular form of one of the metric variables and also the radial 

fall-off behaviour of the anisotropic parameter that has been used in a recent paper by Maharaj et 

al [11]. The advantage of this approach is that one can regain the charged isotropic stellar model 

simply by setting the anisotropy to zero. It is interesting to note that many previously found explicit 

solutions of the Einstein-Maxwell system with anisotropic stress e.g., solutions obtained by [10, 

12, 13, 14, 15, 16] do not have their corresponding isotropic analogues. 

 

It is now a well-established fact that local anisotropy plays a significant role in the studies of 

relativistic stellar objects [17, 18, 19]. In the case of strange stars composed of u, d and s quarks, 

the role of anisotropic stress has been analyzed by [20, 21, 22]. Physically significant parameters 

like surface redshift, luminosity and the maximum mass of a compact star do get significantly 

influenced by the presence of electric field and anisotropic stress have been shown in [22, 23]. 

Since quark stars are expected to possess a huge electromagnetic field Usov [24], it is quite natural 

to study stellar configurations by incorporating electromagnetic field as well. Consequently, a wide 

variety of charged stellar models have been developed and studied which are available in the 

compilation work of Ivanov [25]. 

 

Incorporation of electromagnetic field and anisotropy makes the system of field equations even 

more difficult to solve unless one adopts some simplifying techniques to make them tractable. In 

an earlier work, by identifying a conformal Killing vector, Mak and Harko [26] developed a 

relativistic model of an isotropic quark star. The work was later extended by Komathiraj and 

Maharaj [27] who provided a more general class of exact solutions by incorporating an 

electromagnetic field in the system of field equations. In a more recent work, Maharaj et al [11] 

have made a further generalization of [27] model by incorporating anisotropic stress into the 

system. In a subsequent paper, Sunzu et al [28] performed a detailed physical analysis of the 

solution obtained in [11] and discussed its relevance in the context of compact quark stars 

candidates. It is interesting to note that the class of solutions generated in [11] for an assumed form 

of the anisotropic parameter ∆= 𝐴0 + 𝐴1𝑥 + 𝐴2𝑥2 + 𝐴3𝑥3can be reduced to the charged isotropic 

stellar solutions of [26] and [27]. In this work, we choose a different form of the measure of 

anisotropy which, interestingly, provides much simpler analytic solutions. 

 

The paper has been organized as follows: In Section 2, making use of the Durgapal and Bannerji 

[29] transformations, we have laid down an equivalent set of differential equations of the Einstein-

Maxwell field equations for a matter distribution which admits a bag model EOS. To solve the 

system, we have presented the basic assumptions in Section 3. Two new class of solutions, in terms 

of elementary functions, have been obtained in Section 4. The charged isotropic solutions found 

earlier in [26, 27, 30] have been shown to be special cases of our general class of solutions. In 

Section 5, we have analyzed regularity, physical requirements and subsequent bounds of our 

model. For an assumed set of model parameters, consistent with the bounds, physical acceptability 

of a particular class of solution has been shown. We have concluded by discussing our main results 

in Section 6. 

 

2. Einstein-Maxwell system of equations 

 We write the line element of a spherically symmetric relativistic fluid sphere in coordinates 

(𝑥𝑎) = (𝑡, 𝑟, 𝜃, 𝜙) as  
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𝑑𝑠2 = −𝑒2𝜇(𝑟)𝑑𝑡2 + 𝑒2𝜆(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃𝑑𝜙2),                                                                   (1) 

where 𝜇(𝑟) and 𝜆(𝑟) are yet to be determined. The Einstein-Maxwell system of field equations 

corresponding to the line element (1), are obtained as 

 
1

𝑟2
(1 − 𝑒−2𝜆) +

2𝜆′

𝑟
𝑒−2𝜆 = 𝜌 +

1

2
𝐸2,                                                                                                 (2a) 

−
1

𝑟2
(1 − 𝑒−2𝜆) +

2𝜇′

𝑟
𝑒−2𝜆 = 𝑝𝑟 −

1

2
𝐸2,                                                                                           (2b) 

𝑒−2𝜆 (𝜇′′ + 𝜇′2 +
𝜇′

𝑟
− 𝜇′𝜆′ −

𝜆′

𝑟
) = 𝑝𝑡 +

1

2
𝐸2,                                                                                 (2c) 

1

𝑟2
𝑒−𝜆(𝑟2𝐸)′ = 𝜎,                                                                                                                                     (2d) 

In Equations (2), 𝐸 and  𝜎 denote the electric field intensity and the proper charge density 

respectively and a prime (′) denotes derivative with respect to the radial coordinate 𝑟. In these 

equations and hereafter, we have used units where 8𝜋𝐺 = 𝑐 = 1.  The energy density 𝜌, radial 

pressure 𝑝𝑟 and the tangential pressure 𝑝𝑡 are measured relative to the comoving fluid 4-velocity  

 𝑢𝑎 = 𝑒−𝜇𝛿0
𝑎.     

 

We assume that the interior of the star is composed entirely of 𝑢, 𝑑 and 𝑠 quarks and accordingly, 

we use the MIT bag model EOS 

𝑝𝑟 =
1

3
(𝜌 − 4𝐵).                                                                                                                                          (3) 

Now by introducing the Durgapal and Bannerji [29] transformations 

𝐴2𝑦2(𝑥) = 𝑒2𝜇(𝑟),    𝑍(𝑥) = 𝑒−2𝜆(𝑟),   𝑥 = 𝐶𝑟2,                                                                                   (4) 

the system of equations (2) can be obtained in the following form 

𝜌 = 3𝑝𝑟 + 4𝐵,                                                                                                                                            (5a) 

𝑝𝑟

𝐶
= 𝑍

�̇�

𝑦
−

�̇�

2
−

𝐵

𝐶
,                                                                                                                                     (5b) 

𝑝𝑡 = 𝑝𝑟 + Δ,                                                                                                                                                 (5c) 

Δ

𝐶
=

4𝑥𝑍�̈�

𝑦
+ (6𝑍 + 2𝑥�̇�)

�̇�

𝑦
+ [2 (�̇� +

𝐵

𝐶
) +

𝑍 − 1

𝑥
],                                                                       (5d) 

𝐸2

2𝐶
=

1 − 𝑍

𝑥
− 3𝑍

�̇�

𝑦
−

�̇�

2
−

𝐵

𝐶
,                                                                                                                 (5e) 

𝜎 = 2√
𝐶𝑍

𝑥
(𝐸 + 𝑥�̇�).                                                                                                                                 (5f) 

where dot (.) denotes differentiation with respect to the variable 𝑥; Δ = 𝑝𝑡 − 𝑝𝑟 represents the 

measure of anisotropy and 𝐴 and 𝐶 are arbitrary constants. The mass of a self-gravitating object 

for a given radius is an important measure for comparison with observational data. In this case, the 

mass contained within a radius 𝑥 of the sphere is obtained as 

𝑚(𝑥) =
1

4𝐶
3
2

∫ √𝑥𝜌(𝑥)𝑑𝑥.                                                                                                                        (6)
𝑥

0
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3. Scheme for generating new solutions 

 To integrate the system (5), we need to specify any two of the following variables: 

𝑦, 𝑍, 𝜌, 𝑝𝑟 , 𝑝𝑡, Δ, 𝐸 or 𝜎. We solve the Einstein-Maxwell system by choosing a specific form of the 

gravitational potential y and the anisotropic parameter Δ. Once the gravitational potential 𝑦 and 

the anisotropic parameter Δ are specified, the gravitational potential 𝑍 can be found by integrating 

(5d) which is a first order linear equation in 𝑍. The remaining unknowns 𝑝𝑟 , 𝜌, 𝑝𝑡 and 𝐸2 are then 

obtained from (5b), (5a), (5c) and (5e), respectively. Thus, we have a complete solution of the 

Einstein-Maxwell system of equations. We shall follow this approach in this paper. 

     

We first choose the metric function in the form 

𝑦(𝑥) = (𝑎 + 𝑏𝑥1−𝑚 + 𝑥𝑚)𝑛,                                                                                                                    (7) 

where 𝑎, 𝑏, 𝑚 and 𝑛 are constants. The choice (7) ensures that the metric function is regular at the 

centre and is well behaved within the stellar interior. Moreover, this particular choice contains 

some special cases of previously developed models namely, the case (i) 𝑎 = 𝑏 = 0, 𝑚 =
1

2
and 𝑛 = 1 corresponds to [25] model; and the case (ii) (𝑏 = 1, 𝑚 = 0) or (𝑏 = 0, 𝑚 = 1) with 

𝑛 = 2 corresponds to [27] model of quark stars with isotropic pressure and [11] model with 

anisotropic stresses. In this paper, we intend to study the Einstein-Maxwell system in the presence 

of an anisotropy stress. 

 

Substitution of equation (7) in (5d) yields a first order differential equation 

�̇� + [
1

2𝑥
+

2(𝑛 − 1)(𝑏(1 − 𝑚) + 𝑚𝑥2𝑚−1)

𝑥(𝑏 + 𝑎𝑥𝑚−1 + 𝑥2𝑚−1)
 +

𝑏(1 − 𝑚)𝛾 + 𝑚𝜑𝑥2𝑚−1

2𝑥(𝑏𝜔 + 𝑎𝑥𝑚−1 + (1 + 𝑚𝑛)𝑥2𝑚−1)
] 𝑍           

−
(1 −

2𝐵𝑥
𝐶 ) (𝑏 + 𝑎𝑥𝑚−1 + 𝑥2𝑚−1)

2𝑥(𝑏𝜔 + 𝑎𝑥𝑚−1 + (1 + 𝑚𝑛)𝑥2𝑚−1)
=

∆(𝑏 + 𝑎𝑥𝑚−1 + 𝑥2𝑚−1)

2𝐶(𝑏𝜔 + 𝑎𝑥𝑚−1 + (1 + 𝑚𝑛)𝑥2𝑚−1)
,                     (8) 

for the metric function 𝑍, where we have set 𝛾 = 4 + 𝑛 − 4𝑛𝑚,   𝜑 = 4 − 3𝑛 + 4𝑛𝑚 and 𝜔 =
1 + 𝑛 − 𝑛𝑚.  To integrate (8), we choose the anisotropy in the form 

∆=
2𝛼𝐶

𝑏 + 𝑎𝑥𝑚−1 + 𝑥2𝑚−1
,                                                                                                                           (9) 

where 𝛼 is an arbitrary constant. This particular form ensures the regular behaviour of the 

anisotropy within the stellar interior i.e., it is zero at the centre. Most importantly, this particular 

choice provides an exact solution with desirable physical features. 

    

Substitution of (9) into (8) yields 

�̇� + [
1

2𝑥
+

2(𝑛 − 1)(𝑏(1 − 𝑚) + 𝑚𝑥2𝑚−1)

𝑥(𝑏 + 𝑎𝑥𝑚−1 + 𝑥2𝑚−1)
 +

𝑏(1 − 𝑚)𝛾 + 𝑚𝜑𝑥2𝑚−1

2𝑥(𝑏𝜔 + 𝑎𝑥𝑚−1 + (1 + 𝑚𝑛)𝑥2𝑚−1)
] 𝑍           

−
(1 −

2𝐵𝑥
𝐶 ) (𝑏 + 𝑎𝑥𝑚−1 + 𝑥2𝑚−1)

2𝑥(𝑏𝜔 + 𝑎𝑥𝑚−1 + (1 + 𝑚𝑛)𝑥2𝑚−1)
−

𝛼

(𝑏𝜔 + 𝑎𝑥𝑚−1 + (1 + 𝑚𝑛)𝑥2𝑚−1)
= 0,                 (10) 

Equation (10) can be integrated in terms of elementary functions for specific values of the model 

parameters as discussed in the following. 

 

3.1 The case 𝒎 =
𝟏

𝟐
𝐚𝐧𝐝 𝒏 = 𝟏 
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In this case, the solution of equation (10) is obtained in the form 

𝑍 =
3(2𝑎 + 𝑑√𝑥) −

𝐵𝑥
𝐶 (4𝑎 + 3𝑑√𝑥) + 3𝛼𝑥3/2

3(2𝑎 + 3𝑑√𝑥)
 

where, 𝑏 + 1 = 𝑑. Consequently, we generate an exact analytical model for the system as: 

𝑒2𝜇 = 𝐴2(𝑎 + 𝑑√𝑥)2,                                                                                                                             (11a) 

𝑒2𝜆 =
3(2𝑎 + 3𝑑√𝑥)

3(2𝑎 + 𝑑√𝑥) −
𝐵𝑥
𝐶 (4𝑎 + 3𝑑√𝑥) + 3𝛼𝑥3/2

,                                                                      (11b) 

𝜌 =
3𝐶(6𝑎2𝑑 + 10𝑎𝑑2√𝑥 + 3𝑑3𝑥)

2√𝑥(𝑎 + 𝑑√𝑥)(2𝑎 + 3𝑑√𝑥)
2 +

𝐵 (16𝑎3 + 47𝑎2𝑑√𝑥 + 48𝑎𝑑2𝑥 + 18𝑑3𝑥
3
2)

2(𝑎 + 𝑑√𝑥)(2𝑎 + 3𝑑√𝑥)
2

−
3𝛼√𝑥(3𝑎2 + 4𝑎𝑑√𝑥)

2(𝑎 + 𝑑√𝑥)(2𝑎 + 3𝑑√𝑥)
2 ,                                                                                 (11c ) 

𝑝𝑟 =
𝜌 − 4𝐵

3
,                                                                                                                                           (11d) 

𝑝𝑡 =
𝜌 − 4𝐵

3
+

2𝛼𝐶√𝑥

𝑎 + 𝑑√𝑥
,                                                                                                                      (11e) 

∆=
2𝛼𝐶√𝑥

𝑎 + 𝑑√𝑥
,                                                                                                                                            (11f) 

𝐸2 =
𝐶(−2𝑎2𝑑 − 2𝑎𝑑2√𝑥 + 3𝑑3𝑥) + 𝐵𝑥(𝑎2𝑑 + 2𝑎𝑑2√𝑥)

√𝑥(𝑎 + 𝑑√𝑥)(2𝑎 + 3𝑑√𝑥)
2

−
𝛼√𝑥(7𝑎2 + 22𝑎𝑑√𝑥 + 18𝑑2𝑥)

(𝑎 + 𝑑√𝑥)(2𝑎 + 3𝑑√𝑥)
2 .                                                                         (11g) 

Interestingly, by setting 𝛼 = 0 and 𝑑 = 1(𝑏 = 0), we regain the 1st class of charged isotropic 

solutions of [27]. If we set 𝑎 = 0, we obtain 

𝑒2𝜇 = 𝐴2𝐶𝑟2,   𝑒2𝜆 =
3

1 − 𝐵𝑟2
,   𝜌 =

1

2𝑟2
+ 𝐵,   𝑝𝑟 = 𝑝𝑡 =  

1

6𝑟2
− 𝐵,   𝐸2 =

1

3𝑟2
 .                  (12) 

which is the quark stellar model of [26]. By setting B = 0 in (12), we regain the [30] solution. 

However, even though the gravitational potentials remain well behaved for the obtained class of 

solutions as in previously found solutions of [26, 27, 11]; the matter variables and the electric field 

suffer from singularity in this case. 

 

3.2 The case 𝒎 = 𝟎 𝐚𝐧𝐝 𝒏 = 𝟐 

In this case, by integrating equation (10), we obtain 
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𝑍 = [9(35𝑑3 + 35𝑑2𝑏𝑥 + 21𝑑𝑏2𝑥2 + 5𝑏3𝑥3)                                                                              

−
2𝐵𝑥

𝐶
(105𝑑3 + 189𝑑2𝑏𝑥 + 135𝑑𝑏2𝑥2 + 35𝑏3𝑥3) + 2𝛼𝑥2(63𝑑2 + 90𝑑𝑏𝑥

+ 35𝑏2𝑥2)] ×
1

315(𝑑 + 𝑏𝑥)2(𝑑 + 3𝑏𝑥)
 

where, 𝑎 + 1 = 𝑑. The subsequent solution and matter variables are given as: 

𝑒2𝜇 = 𝐴2(𝑑 + 𝑏𝑥)4,                                                                                                                                (13a) 

𝑒2𝜆 =
315(𝑑 + 𝑏𝑥)2(𝑑 + 3𝑏𝑥)

9(35𝑑3 + 35𝑑2𝑏𝑥 + 21𝑑𝑏2𝑥2 + 5𝑏3𝑥3 − 𝑙(𝑥))
,                                                              (13b) 

𝜌 =
6𝐶(70𝑑4𝑏 + 217𝑑3𝑏2𝑥 + 159𝑑2𝑏3𝑥2 + 75𝑑𝑏4𝑥3 + 15𝑏5𝑥4)

315(𝑑 + 𝑏𝑥)3(𝑑 + 3𝑏𝑥)2
                                                     

+
2𝐵[3(35𝑑5 + 133𝑑4𝑏𝑥 + 246𝑑3𝑏2𝑥2) + 5(254𝑑2𝑏3𝑥3 + 209𝑑𝑏4𝑥4 + 63𝑏5𝑥5)]

105(𝑑 + 𝑏𝑥)3(𝑑 + 3𝑏𝑥)2
            

     −
𝛼𝑥(126𝑑4 + 207𝑑3𝑏𝑥 − 535𝑑2𝑏2𝑥2 − 835𝑑𝑏3𝑥3 − 315𝑏4𝑥4)

105(𝑑 + 𝑏𝑥)3(𝑑 + 3𝑏𝑥)2
,                                    (13c)                                        

𝑝𝑟 =
𝜌 − 4𝐵

3
,                                                                                                                                            (13d) 

𝑝𝑡 =
𝜌 − 4𝐵

3
+

2𝛼𝐶𝑥

𝑑 + 𝑏𝑥
,                                                                                                                          (13e) 

∆=
2𝛼𝐶𝑥

𝑑 + 𝑏𝑥
,                                                                                                                                                (13f) 

𝐸2 =
𝐶𝑥(196𝑑3𝑏2 + 1452𝑑2𝑏3𝑥 + 1356𝑑𝑏4𝑥2 + 420𝑏5𝑥3)

35(𝑑 + 𝑏𝑥)3(𝑑 + 3𝑏𝑥)2
                                                               

−
𝐵𝑥 (56𝑑4𝑏 + 432𝑑3𝑏2𝑥 + 2176𝑑2𝑏3𝑥2 +

7280
3 𝑑𝑏4𝑥3 + 840𝑏5𝑥4)

105(𝑑 + 𝑏𝑥)3(𝑑 + 3𝑏𝑥)2
                                

       −
2𝛼𝑥 (84𝑑4 + 633𝑑3𝑏 + 1699𝑑2𝑏2𝑥2 +

4865
3 𝑑𝑏3𝑥3 + 525𝑏4𝑥4)

105(𝑑 + 𝑏𝑥)3(𝑑 + 3𝑏𝑥)2
.                               (13g)                                        

It is to be stressed here that this particular solution is a generalization of the second class of 

solutions obtained earlier by Komathiraj and Maharaj [27] which can be regained by setting 𝛼 =
0  and 𝑏 = 1. Most importantly, the gravitational potentials and the physical variables are regular 

and well behaved for this class of solutions which facilitates its applicability for the description of 

compact stars.  

            

The form of 𝐸2, in this case, is physically palatable as it remains regular and continuous throughout 

the sphere. In addition, the field intensity 𝐸 vanishes at the stellar centre (𝑟 = 0) and remains 

positive throughout in the interior of the star for appropriate choices of the model parameters. 

 

4. Matching conditions and physical requirements:  

By utilizing the matching conditions, regularity conditions and other physical requirements [31], 

let us now find the appropriate bounds on the model parameters for the particular solution (13): 
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C1. The gravitational potentials 𝑒2𝜆 and 𝑒2𝜇 should remain positive throughout the stellar interior. 

From equations (13a) and (13b), we note that 𝑒2𝜇(𝑟 = 0) = 𝐴2𝑑4, (𝑒2𝜇)′(𝑟 = 0) =

0 and 𝑒2𝜆(𝑟 = 0) = 1, (𝑒2𝜆)
′
(𝑟 = 0) = 0. The results show that the gravitational potentials are 

regular at the centre 𝑟 = 0. 

C2. The energy density and pressure should be non-negative inside the stellar interior. From (13c), 

we obtain the central density 𝜌0 = 𝜌(𝑟 = 0) =
12𝑏𝐶

𝑑
+ 2𝐵. Using (13d), we have 𝑝𝑟(𝑟 = 0) =

𝑝𝑡(𝑟 = 0) =
4𝑏𝐶

𝑑
−

2𝐵

3
 . These results imply that the energy density and the two pressures will be 

non-negative at the centre if the following condition is satisfied: 
𝑏𝐶

𝑑
>

𝐵

6
. 

C3. The interior metric should be matched to the exterior Reissner-Nordstrom metric at the 

boundary of the star 𝑟 = 𝑅. Using this condition, the constant 𝐴 is obtained in terms of model 

parameters and the boundary radius.  

C4. The requirement 𝑝𝑟(𝑟 = 0) = 0  yields the bag constant 𝐵 in terms of model parameters and 

the boundary radius. 

C5. For a realistic star, it is expected that the gradient of density, radial pressure and the tangential 

pressure should be decreasing functions of the radial parameter 𝑟   i.e., 
𝑑𝜌

𝑑𝑟
≤ 0,

𝑑𝑝𝑟

𝑑𝑟
≤ 0 and 

𝑑𝑝𝑡

𝑑𝑟
≤

0. Using equations (3) and (13c) - (13f), this nature has been shown graphically in Fig. 6. 

C6. The causality condition demands that the radial and the tangential sound speeds should not 

exceed the speed of light i.e., 0 <  
𝑑𝑝𝑟

𝑑𝜌
< 1, 0 <  

𝑑𝑝𝑡

𝑑𝜌
< 1. In this model we have 0 <  

𝑑𝑝𝑟

𝑑𝜌
<

1

3
. By 

choosing the model parameters appropriately, we have shown graphically in Fig. 7 that the 

requirement   0 <  
𝑑𝑝𝑡

𝑑𝜌
< 1 is also fulfilled in this model. 

C7. For a realistic model, the following energy conditions are to be satisfied: (i) The Weak Energy 

Condition (WEC) 𝜌 − 𝑝𝑟 ≥ 0 and 𝜌 − 𝑝𝑡 ≥ 0 . (ii) The Strong Energy Condition (SEC) 𝜌 −
3𝑝𝑟 ≥ 0 and 𝜌 − 3𝑝𝑡 ≥ 0 . (iii) The Trace Energy Condition (TEC) 𝜌 − 𝑝𝑟 − 2𝑝𝑡 ≥ 0. Since 

𝜌, 𝑝𝑟 and 𝑝𝑡 are non-negative quantities, the energy condition(s) are satisfied in this model. 

C8. For a stable configuration, it is expected that the adiabatic index Γ =
𝜌+𝑝𝑟

𝑝𝑟
 
𝑑𝑝𝑟

𝑑𝜌
, should be 

greater than 4/3 [32, 33, 34].  The above requirement is fulfilled in our model as can be seen from 

equation (3). 

 

5. Physical analysis 

We have proved that the second class of solution (13) obtained in this paper is regular and well-

behaved. Since the solution has been obtained by assuming the bag model EOS for a quark star, 

one can use the solution to model compact stellar objects like Her X-1 and SAX and J1808.4-3658, 

among others, which have been claimed to be good strange star candidates in the recent past. 
  

Note that the model contains five constants namely, a, b, C, B and α. The constants a and b appear 

in the potential y given in equation (7); the constant C has been utilized in the transformation given 

in (4); B is the bag constant given in equation (3) and α corresponds to the anisotropic factor given 

in (9). The remaining parameters can be expressed in terms of these constants as 𝑑 = 𝑎 + 1, 𝐷 =
𝑏𝐶. Three of these parameters do get fixed by the matching conditions at the boundary, namely 

matching of the interior solution to the Schwarzschild exterior metric at 𝑟 = 𝑅 and imposition of 

the requirement that pressure must vanish at the boundary i.e., 𝑝𝑟(𝑟 = 𝑅) = 0. The parameters α 
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fixes the extent of anisotropy (α = 0 implies isotropic configuration). Thus, for a given bag constant 

within the stability window we have a physically reasonable and well-behaved model. 
       

 For a given set of values of the model parameters (𝐶 = 1, 𝑏 = 0.4, 𝑑 = 2, 𝐵 = 0.303422, 𝛼 =
0.1 and 𝐴 = 0.112372), which are consistent with the constraints discussed in section 4, we have 

shown graphically behaviour of the quantities of physical interest in Fig. 1 -7. For numerical 

calculations, we have used the software package Mathematica [35]. Fig. 1 shows that the 

gravitational potentials 𝑒2𝜇 and 𝑒2𝜆 are continuous, regular and well-behaved within the stellar  

interior. In Fig. 2, we note that that the energy density 𝜌 is positive, finite and decreases radially 

outward. In Fig. 3, the fall-off bahaviour of the radial pressure 𝑝𝑟 tangential pressure 𝑝𝑡 and 𝜌 −
𝑝𝑟 − 2𝑝𝑡  has been shown. Since the energy density  𝜌 and the radial pressure 𝑝𝑟  are linked by a 

linear equation of state, 𝑝𝑟 has the same fall-off behaviour as that of the density. The tangential 

pressure 𝑝𝑡  also decreases radially outward. Obviously, the radial 𝑝𝑟  vanishes at the boundary. 

The tangential pressure need not vanish at the boundary. At 𝑟 = 0, 𝑝𝑟 = 𝑝𝑡  which is a desirable 

feature of a realistic stellar model [24].  The solution satisfies the energy conditions and in Fig. 3 

we note that the trace energy condition (TEC) 𝜌 − 𝑝𝑟 − 2𝑝𝑡 ≥ 0 is also satisfied in this model 

which is a much stronger condition as compared to the other energy conditions [36]. The 

anisotropic factor ∆, as shown in Fig. 4, is zero at the centre and it monotonically increases until 

it attains a maximum value at the boundary of the stellar object. This particular behaviour is similar 

to the results obtained by earlier by [37]. The electric field 𝐸2 is also regular at the cenre; it initially 

increases and then decreases after reaching a maximum which is similar to many results found 

earlier including the recent treatment of Komathiraj and sharma [38]. The work of [38] was, in 

fact, a generalization of the models provided by [29, 39, 40]. In Fig. 5, we note that the mass 

function 𝑚(𝑟) is regular and well behaved. Fig. 6 shows the gradient of density 
𝑑𝜌

𝑑𝑟
, radial pressure 

𝑑𝑝𝑟

𝑑𝑟
 and tangential pressure 

𝑑𝑝𝑡

𝑑𝑟
 are all negative throughout the star. Fig. 7 shows that 

𝑑𝑝𝑟

𝑑𝜌
 and 

𝑑𝑝𝑡

𝑑𝜌
 

also remain within the desired range [0, 1]. 

 

 

 

Fig. 1. Behaviour of gravitational potentials  𝑒2𝜇 𝑎𝑛𝑑 𝑒2𝜆 at the stellar interior. 
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Fig. 2.  Radial variation of energy density. 

 

 

 
Fig. 3. Fall-off bahaviour of the radial pressure 𝑝𝑟, tangential pressure 𝑝𝑡 and 𝜌 − 𝑝𝑟 − 2𝑝𝑡 

 

 

 
Fig. 4. Radial variation of anisotropic factor 𝛥 and electric field 𝐸2. 
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Fig. 5. Mass function 𝑚(𝑟) plotted against the radial distance. 

 

 

 

Fig. 6. Gradient of density 
𝑑𝜌

𝑑𝑟
, radial pressure 

𝑑𝑝𝑟

𝑑𝑟
 and tangential pressure 

𝑑𝑝𝑡

𝑑𝑟
. 

 

 

Fig. 7. Radial variation of  
𝑑𝑝𝑟

𝑑𝜌
  and  

𝑑𝑝𝑡

𝑑𝜌
 . 

 

6. Discussion 

To summarize, in this work, we have been able to provide a couple of new solutions for an 

anisotropic stellar configuration couched on the Reissner-Nordstrom¨ background spacetime. We 

have demonstrated that there exist particular values of the model parameters for which a particular 

class of solution (13) satisfies the requirements of a physically reasonable stellar model. Since the 

solution has been obtained for a composition admitting a bag model EOS, the solution might be 
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useful for the description of compact strange star candidates. Hopefully, our results will contribute 

to the rich class of exact solutions to the Einstein-Maxwell system of field equations. It is to be 

stressed that we have been able to generate solutions for parameter values (i) 𝑚 =
1

2
and 𝑛 =

1; and (ii) 𝑚 = 0 and 𝑛 = 2, only. It will be interesting to check what other values of the model 

parameters can yield solutions which are regular, well behaved and can describe realistic stars. 

Such possibilities, however, will be taken up elsewhere. 
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